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Objectives: Adult patients with epilepsy have an increased
prevalence of major depressive disorder (MDD). Intracranial
EEG (iEEG) captured during extended inpatient monitor-
ing of patients with treatment-resistant epilepsy offers a
particularly promising method to study MDD networks in
epilepsy.

Methods: The authors used 24 hours of resting-state iEEG
to examine the neural activity patterns within corticolimbic
structures that reflected the presence of depressive symp-
toms in 13 adults with medication-refractory epilepsy. Prin-
cipal component analysis was performed on the z-scored
mean relative power in five standard frequency bands aver-
aged across electrodes within a region.

Results: Principal component 3 was a statistically significant
predictor of the presence of depressive symptoms (R2=0.35,

p=0.014). A balanced logistic classifier model using principal
component 3 alone correctly classified 78% of patients as
belonging to the group with a high burden of depressive
symptoms or a control group with minimal depressive
symptoms (sensitivity, 75%; specificity, 80%; area under the
curve=0.8, leave-one-out cross validation). Classificationwas
dependent on beta power throughout the corticolimbic net-
work and low-frequency cingulate power.

Conclusions: These finding suggest, for the first time, that
neural features across circuits involved in epilepsy may dis-
tinguish patients who have depressive symptoms from those
who do not. Larger studies are required to validate these
findings and to assess their diagnostic utility in MDD.

JNCN in Advance (doi: 10.1176/appi.neuropsych.19030081)

Major depressive disorder (MDD) in epilepsy is consistently
underdiagnosed and undertreated (1), yet it is well known that
the presence of this comorbidity can lead to worse seizure
outcome following treatment with medication (2) or surgical
resection (3, 4). Novel research has conceptualized both focal
epilepsy and depression as network disorders, suggesting that
the substrates in each of these two disordersmay be distributed
in overlapping networks rather than confined to single brain
regions (5–7). In neuroimaging and EEG studies, dysfunction
in limbic temporofrontal and parietofrontal networks is consis-
tently observed in both disorders independently (7–9). To our
knowledge, there are no studies to date that have examined the
neurophysiological signatures of network dysfunction in af-
fective disorders in patients with epilepsy. Given the chronic,
persistent nature of the symptoms of mood disorders, we hy-
pothesized that these symptoms would likely be mediated by
interictal dysfunction rather than the relatively transient neural
changes that occur during seizures. Thus, we sought to de-
termine whether there are differences in network activity
during interictal periods that can distinguish patients with focal
epilepsy who have self-reported symptoms of depression from
patients without depression. Such studies may begin to provide

a better understanding of the etiology of comorbid MDD and
could lead to the development of novel personalized therapies.

Intracranial EEG (iEEG) captured during the presurgical
recording period in epilepsy patients with treatment-
refractory symptoms offers a particularly promising method
to study MDD networks in epilepsy. This technique allows
for both high temporal resolution and spatial precision
and enables direct neural recordings across cortical and deep
structures.

In this pilot study, we examined four regions across a
corticolimbic network that are common sites of epilepsy foci
and are implicated in both the pathophysiology of MDD and
epilepsy (6, 7). These regions include the anterior cingulate,
the orbitofrontal cortex (OFC), the amygdala, and the hip-
pocampus. We examined resting-state iEEG data across this
network to identify neural features that differentiate patients
with and without self-reported symptoms of depression.

METHODS

A total of 13 adult patients undergoing surgical treatment for
medication-refractory epilepsy who were implanted with
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intracranial grids, strips, or depth electrodes as part of their
clinical evaluation for epilepsy surgery were included in the
study. We used the Patient Health Questionnaire-9 (PHQ-9)
(10), a 9-item self-report instrument, to screen participants
for a high burden of depressive symptoms (score $10). The
first 24 hours of resting-state neural recordings were used to
maximize signal quality. This study was approved by the
institutional review board of the University of California at
San Francisco, and written informed consent was obtained
from all study subjects.

TheNatus EEG clinical recording system (NatusMedical,
Pleasanton, Calif.) was used to collect iEEG data at a 1–2 kHz
sampling rate. Offline analysis was conducted with custom
scripts inMATLAB (MathWorks, Natick, Mass.) and Python
(Python Software Foundation, Wilmington, Del.). Standard
iEEG preprocessing techniques were used, including appli-
cation of a 2- to 250-Hz bandpass filter, notch filters at line
noise frequency (60 Hz) and harmonics, down sampling to
512 Hz, and common average referencing. All data were
manually cleaned of artifacts, seizures, epileptiform activity,
and sleep in 30-second intervals under the supervision of
one study author (AK), who is board certified in clinical
neurophysiology and sleep medicine and was blind to high-
depressive symptoms categorization. Only electrode con-
tacts that were verified byMRI as being correctly positioned
in the region of interest were used for analysis. Continuous
waveform transformation with the Morlet wavelet trans-
form method (11) was performed in 30-second intervals to
obtain power spectra in five frequency bands (delta=2–4
Hz, theta=4–7 Hz, alpha=8–12 Hz, beta=13–30 Hz, and
gamma=31–70 Hz). Relative power was calculated by di-
viding the power of each frequency band by the total power
for each electrode.

Principal component analysis was performed on the
z-scored mean relative power across time and electrodes
within a region and combined across study subjects (4). The
principal component analysis is used to address collinearity
among EEG measures. It solves for linear combinations of
the predictor variables, which are uncorrelated and then
used as the predictor variables instead of the true variables.
Stepwise linear and logistic regression models were per-
formed with the PHQ-9 score or the presence of high de-
pressive symptoms, respectively, as the outcome variable
and principle components of the frequency spectral mea-
sures derived from the iEEG as the independent variables.
Components were entered stepwise into the regression
analysis. Because the principal component analysis is a linear
transformation of the original dimensions, power units were
maintained before and after it was applied. The composite
score represents a linear combination of the original power
estimates.

To determine the ability of the biomarker to correctly
classify patients with and without high depressive symp-
toms, we carried out preliminary analyses of accuracy, sen-
sitivity, and specificity by using the standard leave-one-out
cross-validation method. This involved developing a model

in a subset of all patients except one, and testing themodel in
the remaining study subject, performing multiple rounds of
cross-validation until all participants were left out and then
averaging the validation results over the rounds to estimate a
final predictive model (4).

RESULTS

The demographic and clinical characteristics of the study
sample are summarized in Table 1. Among the 13 partici-
pants, 62% (N=8) had high depressive symptoms. The high-
depressive symptoms group and the control group with
minimal depressive symptoms were similar with regard
to age (mean age=33.0 years [SD=5.93] and 33.4 years
[SD=11.06], respectively). Eighty-eight percent of patients in
the high-depressive symptoms group had temporal lobe
epilepsy compared with 60% in the control group. Female
participants comprised 50% (N=4/8) of the high-depressive
symptoms group and 80% of the control group (N=4/5). In
the high-depressive symptoms group, 88% of patients went
on to receive surgical intervention compared with 80%
in the control group) (chi-square or Kruskal-Wallis test,
p.0.05). No participants were taking psychiatric medica-
tions. All patients were taking antiepileptic medications that
were being tapered. There was no significant difference in
the type of antiepileptic medications across the two study
groups (chi-square or Kruskal-Wallis test, p.0.05).

The recording locations across participants is shown in
Figure 1A. Principal component analysis yielded 12 principal
components with eigenvalues .0.1 (Figure 1B). Component
loadings across the 12 principal components are presented in
Table S1 in the online supplement. A forward-stepwise lin-
ear regression model was a statistically significant predictor
of the PHQ-9 score, with three principal components ac-
counting for 62% of the variance (p=0.03, R2=0.62, and
leave-one-out cross-validation: pseudo R2=0.29). We found
that principal component 8 alone accounted for the majority
(35%) of this variance (R2=0.35, p=0.034, coeff=25.07)
(Figure 1C). The other two principal components in the

TABLE 1. Demographic and clinical characteristics of the study
sample (N=13)a

Characteristic

High-depressive
symptoms group

(N=8)
Control group

(N=5)

Mean SD Mean SD

PHQ-9 score 13.0 1.73 4.4 2.65
Age (years) 33.0 5.93 33.4 11.06

N % N %

Female 4 50 4 80
Temporal lobe epilepsy 7 88 3 60
Surgical treatment 7 88 4 80

a The high-depressive symptoms group was categorized by a Patient Health
Questionnaire–9 (PHQ–9) score $10, and the control group was catego-
rized by a score ,10 (i.e., minimal depressive symptoms). No participants
were receiving psychiatric medications.
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model contributed about equally (principal component 12:
17%; principal component 3: 10%).

We then carried out a dichotomous analysis to assess
whether a set of neural features, represented by the princi-
pal components, could classify patients with high depressive
symptoms from patients without high depressive symptoms.
A forward-stepwise logistic regression model was a statis-
tically significant predictor of high-depressive symptom
status, in which principal component 3 was a significant
contributor (R2=0.35, p=0.014), with an odds ratio of 2.7. A
leave-one-out cross-validation method, again, revealed ac-
ceptable generalization (pseudo R2=0.27). Principal com-
ponent 3 was significantly lower in the high-depressive
symptoms group compared with the control group (–0.93
and 1.48, respectively; two-sample t test, p=0.02). The mean
power within principal component 3 and the range across
individual study subjects for each group is shown in
Figure 2A. A balanced logistic classifier model with principal
component 3 alone correctly classified 78% of patients as
belonging to the high-depressive symptoms group or the
control group (sensitivity, 75%; specificity, 80%; area un-
der the curve [AUC]=0.8, leave-one-out cross validation)
(Figure 2B). These results provide initial evidence that
principal component 3 was a significant modest, but reliable,
factor in identifying most study subjects with depressive
symptoms. Therewere some patients who did not follow this
pattern and whose symptoms could represent a depression
subtype that would be of interest to explore in a larger

sample. Themean powerwithin principal components 8 and
12 was not significantly different across the two study groups
(p=0.24 and 0.28, respectively, two-sample t test).

Principal component 3 was common to both the logistic
and linear regression models. It was heavily dependent on
relative beta power across the entire corticolimbic network.
Component loadings of principal component 3 indicated en-
hanced OFC and cingulate beta power in high depressive
symptoms and decreased hippocampal and amygdala beta
power (Figure 2C). A balanced logistic classifier model with
these four beta features alone correctly classified 64% of pa-
tients (sensitivity, 67%; specificity, 70%; AUC=0.7, leave-one-
out cross validation), suggesting that corticolimbic beta power
contributed most strongly to the classification dependent on
principal component 3. In addition, high component loadings
were observed for cingulate alpha (positively correlated with
PHQ-9 scores) and theta power (negatively correlated with
PHQ-9 scores), replicating previous findings that suggest the
importance of cingulate activity in depression. Principal
components 8 and 12 were in line with principal component
3 and also dependent on beta and theta power as well as
cingulate activity (Figure 2C).

DISCUSSION

By using direct neural recordings, we identified a puta-
tive biomarker of self-reported depressive symptoms in
medication-refractory epilepsy that was correlated with

FIGURE 1. Neural features correlated with high-depressive symptom severity in adults with medication-refractory epilepsya
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a Panel A shows the location of recording electrodes across the study population. Panel B shows the eigenvalues of the 12 principal components
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depression symptom severity and could correctly classify
the majority of patients with and without high depressive
symptoms (AUC=0.8). To our knowledge, this is the first
study of a biomarker of psychiatric symptoms comorbidwith
focal epilepsy. Larger studies are required to validate these
preliminary findings, assess their diagnostic utility in MDD,
and evaluate their effectiveness for treatment stratification.

While a single brain circuit unique to depression in
epilepsy is unlikely, previous studies support a degree of
commonality across circuitry that underlies depressive
symptoms (8, 12, 13). Our results suggest that it may be
possible to identify and extract this commonality, even with
a small sample of patients with intracranial recordings. Our
classification results are consistent with many larger func-
tional MRI brain-based biomarkers (14–17). The classifica-
tion was heavily dependent on power in the beta frequency
band (13–30 Hz) throughout the corticolimbic network.
Relative beta power was enhanced in the OFC and cingu-
late and decreased in the amygdala and hippocampus.
Beta power is generally considered a marker of activation
or arousal (18) and has been identified as a marker of

depression in previous studies, although the direction of the
effect has been mixed (19–21). Fingelkurts et al. (22) found
that beta brain oscillations throughout the posterior cortical
region characterized patients with depression, which was
hypothesized by the authors to be a result of greater anxiety
measured in these patients compared with control subjects.
Similarly, a recent iEEG study of patients with epilepsy
found that increased amygdala-hippocampal coherence var-
iance in the beta band was correlated with worsening mood
in a majority of study subjects (13).

In addition to specific differences in beta power, we found
enhanced cingulate alpha power and reduced cingulate
theta power to be important contributors in distinguishing
high depressive symptoms. Theta and alpha power within
the limbic regions were also prominent contributors to the
variance across PHQ-9 scores. Previous findings suggest that
alterations in the cingulate in these frequency bands reflect
disrupted limbic pathways (23), may serve as markers of
MDD (24), and are modulated by antidepressant treatment
(25, 26). Indeed, alterations in theta and alpha bands have
been most consistently reported in quantitative EEG studies

FIGURE 2. Neural features identifying adult patients with high-depressive symptom (HDS) severitya
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of MDD (25, 27–35). These include early studies that re-
ported alpha asymmetry reflected by increased left frontal
alpha power (33, 34), although this finding was subsequently
reported to lack temporal stability (35). In addition, sub-
sequent work identified combined measures of alpha and
theta power (antidepressant treatment response index [27,
28] and ameasure of theta power, i.e., theta cordance [29]) as
promising biomarkers of treatment response (25, 30, 31, 36,
37). Other studies have investigated network organization in
MDD by examining spectral coherence to estimate network
connectivity (38). One such study identified an overall
stronger connectivity across brain regions in theta and alpha
bands in patients with depression compared with non-
depressed control subjects (38). A subsequent study ex-
tended these findings and reported higher theta and alpha
coherence in patients with MDD over healthy control sub-
jects, especially within long-range connections between
frontal regions and temporal and parietooccipital regions,
and locally higher beta coherence within frontal and tem-
poral regions (24). Although the scope of the present study
was limited to power features over coherence, we may
speculate that our findings reflect both disrupted local (beta)
and long-distance (alpha and theta) organization across the
limbic network. In line with this hypothesis, network anal-
ysis with graph theoretical approaches has shown both
inter- and intranetwork connectivity disruptions in emotion,
attention, and cognitive networks in patients with de-
pression (39, 40).

While previous studies have relied on source localization
of scalp EEG data to draw conclusions about spectral power
within deeper structures, in the present study we employed
intracranial recording and can, therefore, provide more de-
finitive spatial localization of activity. As a result, this study
extends current findings to link neural features from deep
and cortical structures demonstrating a consistent and re-
ciprocal relationship of spectral activity across the limbic
network and supporting a focus on the cingulate in MDD.

An inherent limitation of working with iEEG recordings
is the inconsistent placement of electrodes, which leads to
challenges in grouping study subjects that have common
recordings. Our sample size was small, because our goal was
to identify a circuit-level biomarker, and patients were
therefore included only if they had iEEG electrodes in the
same four brain regions. As a result of the limited sample
size, it was not feasible to train and test the regression
models on independent data sets, and thus we used leave-
one-out cross validation to maximize the amount of data
available to learn discriminating features. Another limitation
was the use of stepwise regressions, which were used to
automatically select discriminatory variables from our larger
set of principal components but have the potential for
overfitting. Cross validation was performed in conjunction
with the regressions to test the performance stability of the
model and demonstrated consistent, but more moderate,
correlations. Finally, it also remains possible that differences
in epileptiform activity or the type of epilepsy contributed to

the observed power changes, even after we removed epi-
leptiform activity from the neural data.

While these results are preliminary, a common-circuit
model that characterizes the majority of patients advances
our understanding of depression and could serve as the
substrate for larger studies that are aimed to replicate these
findings directly inMDD and investigate the development of
novel, personalized treatment strategies that specifically
target dysfunctional networks.
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