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Deep brain stimulation is a promising treatment for neu-
ropsychiatric conditions such as major depression. It could 
be optimized by identifying neural biomarkers that trigger 
therapy selectively when symptom severity is elevated. We 
developed an approach that first used multi-day intracranial 
electrophysiology and focal electrical stimulation to identify 
a personalized symptom-specific biomarker and a treatment 
location where stimulation improved symptoms. We then 
implanted a chronic deep brain sensing and stimulation device 
and implemented a biomarker-driven closed-loop therapy in 
an individual with depression. Closed-loop therapy resulted 
in a rapid and sustained improvement in depression. Future 
work is required to determine if the results and approach of 
this n-of-1 study generalize to a broader population.

Major depressive disorder (MDD) is a common disorder with 
high rates of treatment resistance1. Deep brain stimulation (DBS) 
has shown promise as a treatment for refractory MDD but inter-
individual response heterogeneity has contributed to inconsistent 
findings in definitive clinical trials2–4. Open-loop approaches deliver 
fixed, constant stimulation to a single brain structure and have been 
successful in Parkinson’s disease and epilepsy. In MDD, however, 
evidence that different neural circuits underlie different subsets of 
MDD symptoms speaks for personalized circuit targeting5.

There is also need for personalization via temporally control-
ling stimulation as in closed-loop neuromodulation, where a 
patient’s own physiological activity is used to selectively trigger 
stimulation only when a pathological state is detected6. Because the 
mood-related effects of neuromodulation exhibit state dependence7, 
this temporal specificity may be critical for success in patients with 
MDD with frequent state changes. Closed-loop stimulation also 
mitigates concerns for neural adaptation, preserves battery life 
and reduces side effects. However, closed-loop therapy requires a 
symptom-specific biomarker that has not previously been identi-
fied in MDD. In this study, we report our experience with a patient, 
where we identified a biomarker of MDD symptoms during a 10-d 
period of intracranial corticolimbic circuitry mapping. We then 
successfully implemented the biomarker in implanted closed-loop 
therapy. This is a demonstration of chronic closed-loop neuromod-
ulation in a psychiatric disorder.

The patient was a 36-year-old woman with childhood onset 
severe and treatment-resistant MDD (Montgomery–Åsberg 
Depression Rating Scale (MADRS) = 36 out of 54) unresponsive 
to multiple antidepressant combinations and electroconvulsive 

therapy, who participated in a personalized closed-loop neuro-
stimulation trial7. We first performed stimulus-response mapping 
of emotion circuitry employing ten stereoelectroencephalography 
(SEEG) electrodes implanted bilaterally in the orbitofrontal cor-
tex (OFC), amygdala, hippocampus, ventral capsule/ventral stria-
tum (VC/VS) and subgenual cingulate cortex (SGC). We found 
dimensionally restrictive clinical responses to stimulation across 
corticolimbic circuitry aligning with different types of depression 
symptoms7. Neural activity was recorded continuously for 10 d 
while the patient completed symptom rating scales used to define 
high and low symptom severity states (Fig. 1a,b).

We then identified SEEG spectral activity features in 6 stan-
dard frequency bands that discriminated 15-min segments of 
resting-state activity coinciding with high and low symptom states 
(n = 35) employing two cross-validated supervised machine learn-
ing models at different spatial resolutions. We found that bilat-
eral amygdala gamma power alone was sufficient to detect the 
high symptom severity state (accuracy: mean = 0.77, s.d. = 0.09; 
area under the curve (AUC): mean = 0.82, s.d. = 0.11; Fig. 1c and 
Extended Data Fig. 1a).

We identified right VC/VS as the stimulation site that led to 
consistent, sustained and dose-dependent improvement of symp-
toms7. We next examined connectivity to determine whether right 
hemispheric VC/VS and amygdala nodes constituted a structurally 
and functionally connected subnetwork. We performed evoked 
potential mapping to generate a global directed network graph8 
(Fig. 1d) and quantified node-relative importance. We found that 
the amygdala and hippocampus integrated signals from many 
brain regions (highest weighted indegree) while VC/VS influenced 
many distant brain regions (highest weighted outdegree; Fig. 1e). 
Furthermore, the VC/VS-stimulated evoked response was stronger 
in the amygdala (Fig. 1f) than other network nodes (Extended Data 
Fig. 1b). Using deterministic tractography we next identified axonal 
fiber tracts underlying this effective connectivity. Dense right VC/
VS-amygdala structural connectivity consisted of the stria terminalis 
and ansa peduncularis (Fig. 1g and Extended Data Fig. 1c). Finally, 
VC/VS stimulation at contacts 2+/3− improved clinical symptoms 
on 11 out of 13 trials. We examined the change in amygdala gamma 
power with stimulation with a variety of stimulation paradigms and 
baseline symptom severities where we had clinical and SEEG data 
(n = 5 trials). We observed a reduction in amygdala gamma power 
on both trials where symptom severity improved, which was absent 
on trials when symptom severity did not improve due to alternate 
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stimulation paradigms, minimal baseline symptoms or a primary 
effect on activation over depression (Fig. 1h).

We next implanted the U.S. Food and Drug Administration 
(FDA)-approved NeuroPace RNS System9 unilaterally in the 
right hemisphere (Fig. 2a), with two separate sensing/stimula-
tion four-contact depth leads placed in the amygdala and VC/VS, 
respectively (Fig. 2b). The NeuroPace RNS System continuously 
senses neural activity; detection of prespecified patterns of activ-
ity are coupled to delivery of electrical stimulation to designated 
electrodes. Using the NeuroPace RNS System telemetry wand, we 
wirelessly streamed 10-min trials of continuous amygdala real-time 
electrocorticography while the patient engaged in naturalistic activ-
ities (for example, social media, virtual therapy). We then paired 
the neural activity with clinical severity ratings (Fig. 2c) and found 
that the symptom-specific amygdala gamma power replicated  

findings from the 10-d intracranial mapping. It was highly correlated 
with both the visual analog scale-depression (VAS-D) (r2 = 0.79, 
P = 4.6 × 10−5), VAS-anxiety (VAS-A) (r2 = 0.53, P = 7.5 × 10−3) and 
the 6-item Hamilton Depression Rating Scale (HAMD-6) (r2 = 0.68, 
P = 6.5 × 10−4; Fig. 2d) and significantly differentiated the high 
and low symptom severity states (analysis of variance (ANOVA), 
F = 6.37, P = 0.012).

The clinical effect of right VC/VS stimulation also replicated 
results from the intracranial mapping study. Bipolar stimulation 
at the VC/VS contacts that engaged the stria terminalis and ansa 
peduncularis (contacts 2+/3−, 3+/4−, 100 Hz, 120 µs, 1–2 mA) led to 
acute dose-dependent symptom improvement across most trials 
and the effect was strongest and preferred by the patient (pleasur-
able/energizing) at the predicted location (contacts 3+/4−) compared 
to other VC/VS and amygdala contact pairs (Fig. 2e). Furthermore, 
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Fig. 1 | Neural biomarker and limbic subnetwork of depression. a, Location of intracranial electrodes and overall approach for biomarker detection. b, 
Clustering clinical reports on anxiety and depression dimensions resulted in two symptom states. Shading has been added to aid visualization. c, Top 
neural features (defined by F-score, ANOVA) that discriminated high versus low symptom severity states. Receiver operating characteristic curves reflect 
the mean ± s.e.m. over n = 1,000 randomly sampled features for the true (blue) and shuffled models (gray). d, Directed network graph of right hemisphere 
where percentage circumference indicates the strength of connection between any two brain regions. The color indicates the starting location for each set 
of connections. e, Connectivity strength from the network graph was quantified by calculating the weighted indegree and outdegree. The values represent 
the sum of incoming/outgoing evoked potential waveform N1 (10–50 ms poststimulation) amplitudes, averaged over n = 20 repeated pulses. f, Example 
of dose-dependent mean-evoked potentials (left). Summary of evoked potentials across the corticolimbic network due to single pulses in the right VC/VS 
is shown overlayed on the brain as a heatmap (right). Warmer colors indicate a larger N1 amplitude. g, Location of right-sided iEEG leads with fiber tracts 
(color-coded by orientation) showing structural connections between the amygdala and clinically responsive VC/VS electrodes. Lead location is indicated 
by color as in d,e. h, Change in gamma biomarker after a period of continuous stimulation for those trials that led to a reduction in symptom severity (red) 
and those that did not reduce symptom severity (blue).
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6 s of intermittent stimulation at 1 mA was clinically effective and 
below the patient’s perceptual threshold (Fig. 2f). Increasing the 
dose to 2 mA or changing contacts led the patient to perceive stimu-
lation and worsened the clinical response on some trials.

We then implemented closed-loop therapy such that 6 s of 
stimulation were delivered following the device’s automated bio-
marker detection (Fig. 2g). We found that the number of detections, 
defined as gamma power crossing a threshold of 0.8% of full ampli-
tude scale within 10-min recording periods was 87% predictive of 
symptom severity state and highly correlated with VAS-D (r2 = 0.59, 
P = 1.2 × 10−4), VAS-A (r2 = 0.52, P = 4.6 × −4) and HAMD-6 
(r2 = 0.65, P = 1.98 × 10−5; Fig. 2h). Over the course of 2 months, we 

found that on average, there were 468 detections distributed across 
the daytime (s.d. = 206) with minimal nighttime stimulations. We 
set a stimulation cap of 300 therapies per day (30 min total stimula-
tion) so as not to disturb sleep from evening therapy.

Implementation of closed-loop therapy rapidly improved both 
symptom severity (measured daily with the HAMD-6/VAS scales) 
and depression (periodic MADRS). The individual’s MADRS score 
dropped from a 33 before turning treatment ON to a 14 at the first 
during-treatment assessment carried out after 12 d of stimulation 
and dropped below 10 (remission) several months later. Similarly, 
her HAMD-6 and VAS-D scores dropped precipitously the morn-
ing after stimulation started (HAMD-6 = 12.0 to 1.0; VAS-D = 77 
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Fig. 2 | Implementation of closed-loop neuromodulation. a, Fully implantable DbS system (illustrated by K. X. Probst). b, Reproducibility of targeting 
showing robust engagement of the stria terminalis and ansa peduncularis. VC/VS lead, yellow; amygdala lead, pink. c, Distribution of symptom severity 
scores in relation to clusters identified in the mapping study. d, Positive correlation between gamma power in amygdala contacts 1/2 and 3/4 within the 
10-min trials and HAMD-6 score. The linear regression model was evaluated using a two-sided F-test and P values were adjusted for multiple comparisons. 
The linear model fit is presented as the mean ± s.e.m. over n = 16 symptom ratings. e, Reproducibility of clinical effects. Each point represents a stimulation 
trial (n = 6, 2, 4, 5 for VAS-D; n = 6, 2, 3, 4 for HAMD) at different bipolar configurations across the right VC/VS and amygdala. f, Left: Effect of burst 
duration on clinical measures. Stimulation parameters: contact 3+/4−, 1 mA, 36 s total stimulation across 15.6 min in 6–36 s intervals. Highlighted condition 
(6-s burst duration) selected for implementation of closed-loop therapy. Right: Effect of increasing dose (1–2 mA) and changing contacts (3+/4− to 2+/3−) 
on clinical measures. The faded colors indicate that ON/OFF states were detected by the patient (one trial per condition). g, Schematic of closed-loop 
control. h, Positive correlation between number of gamma detections by the NeuroPace RNS System within 10-min trials as in d and HAMD-6 score. The 
linear regression model was evaluated using a two-sided F-test and P values were adjusted for multiple comparisons. The linear model fit is presented as 
the mean ± s.e.m. over n = 18 gamma detections. i, Symptom severity scores in the week pre- versus postclosed-loop stimulation onset (n = 3, 31 for VAS-D, 
n = 2, 30 for HAMD-6). j, Relationship between daily mood ratings (purple) and number of daily biomarker detections (gray). The dotted lines indicate the 
DTW-computed distance between VAS-D scores and daily biomarker detection numbers (left). Significance was assessed by comparing the DTW distance 
to that computed from 10,000 randomly scrambled biomarker time series (right).
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to 23) and were lower the week after stimulation was turned ON 
versus the previous week (HAMD-6 = mean 16 (s.d. = 2.82) to 1.6 
(s.d. = 1.60), Welch’s t-test P = 0.08; VAS-D = 77.33 (14.57) to 10.48 
(5.74), Welch’s t-test, P = 0.02; Fig. 2i).

To evaluate whether our algorithm triggered stimulus delivery 
linked to patient symptoms, and not randomly, we used dynamic 
time warping (DTW) to nonlinearly align daily symptom sever-
ity (VAS-D) and biomarker detection count time traces over two 
months and calculated their relative postalignment distance10. We 
found that fluctuation in daily symptoms was significantly associ-
ated with the fluctuation in number of device-detected biomarker 
events (P = 2.8 × 10−4; Fig. 2j). This suggests that our biomarker 
detection algorithm detects changes in symptom severity signifi-
cantly better than random chance.

In conclusion, we show the successful development of a person-
alized biomarker of depression-specific symptoms and implemen-
tation of closed-loop therapy for MDD. Success was predicated on 
a clinical mapping stage before chronic device placement, a strat-
egy that has been utilized in epilepsy to map seizure foci in a per-
sonalized manner but has not previously been performed in other 
neuropsychiatric conditions. During this stage, we developed a 
comprehensive multimodal framework for selection of sensing and 
stimulation brain targets (Extended Data Fig. 2). Our approach 
included personalized stimulus-response mapping, pairing of 
resting-state signals with clinical symptom measures and identifica-
tion of functionally and structurally connected subnetworks across 
the corticolimbic network.

Network mapping and biomarker discovery suggested that VC/
VS-amygdala represented an important limbic subnetwork in this 
patient. Amygdala gamma power reflected depression severity 
and could be modulated by VC/VS stimulation to decrease clini-
cal symptoms. Previous work showed that these brain regions are 
important nodes within the mood regulatory circuitry11. Bursts of 
high-frequency amygdala activity correlate with emotion states in 
humans12 and VC/VS has been a thoroughly studied DBS target for 
depression13 and may be particularly effective for treating anhedo-
nia given its role in the reward pathway. Thus, successful reduction 
in amygdala gamma may be a requirement for symptom improve-
ment. We validated the amygdala gamma biomarker using the 
NeuroPace RNS System and identified a set of detection algorithms 
that enabled us to successfully translate this marker into closed-loop 
treatment. While traditional DBS is performed bilaterally, we per-
formed right-sided unilateral therapy based on the clinical mapping 
study and safety considerations. Reasons for observed hemispheric 
differences are unknown but could be lateralization of emotion reg-
ulation or electrode placement within the VC/VS bilaterally.

Our single-participant study cannot evaluate whether the VC/
VS-amygdala subcircuit or amygdala biomarker is present in all 
individuals. Previous literature suggested that the SGC is another 
promising site for closed-loop stimulation in some individuals14. 
Our methodology intentionally accounts for intersubject variability 
in MDD symptoms. In contrast to previous DBS studies, a random-
ized controlled trial using this approach would identify a unique 
biomarker and treatment site for each individual. It is possible that 
this personalized approach will overcome limitations evident in 
previous randomized controlled trials where efficacy was not found 
when stimulating the VC/VS (or SGC) in all participants2–4. In the 
future, group-level analyses may assess whether certain symptom 
profiles are predictive of a stimulation target and help define symp-
tom state thresholds that enhance biomarker identification.

We conceptualized MDD as a dynamic process where symp-
toms arise when a dysfunctional activity state emerges in one or 
more prefrontal/limbic brain networks subserving mood-related 
functions. In this model, stimulation has an immediate impact on 
symptom severity. An acute response to VC/VS stimulation was 
observed in previous studies in intraoperative or programming 

periods15. Yet, is not always sustained once continuous stimulation 
is initiated. By delivering intermittent stimulation in a closed-loop 
manner, we hypothesize that we can repeatedly obtain these acute 
effects and employ them to treat depression. In line with our 
model, this patient’s depression acutely improved once closed-loop 
therapy was initiated and the effect has been maintained with sus-
tained closed-loop therapy through the time of writing this article. 
Both the rapidity and intensity of this clinical response was highly 
unusual in treatment-resistant depression, where the 1-year remis-
sion rate for ‘treatment as usual’ is approximately 3.5%16 and symp-
tom relief from DBS can take months to emerge2.

There are several limitations to this study. First, is the n-of-1 
sample. It is unknown if the results will generalize. Furthermore, 
while the patient was blinded to stimulation location and param-
eters, the clinicians were usually but not always blinded. It is pos-
sible that this affected therapeutic response. It is also possible that 
non-affective sensations elicited during stimulation influenced her 
affective response. We made efforts to minimize this likelihood by 
keeping the patient blinded and reducing stimulation intensity if 
such sensations were observed or reported. Due to device capabili-
ties, we were limited to exploring biomarkers in the power domain 
in a few frequency bands that could be detected in a time window of 
a few seconds. New device capabilities that sense continuous neural 
activity and have the capability to integrate information on the tim-
escale of minutes may improve our ability to incorporate more com-
plex biomarkers into closed-loop control17. The degree of network 
plasticity or drift in the biomarker signal across time is another 
area for future work. The intent of this study was not to address the 
efficacy of closed-loop neuromodulation for MDD, which would 
require a double-blind, randomized controlled, adequately powered 
study. In this study, we established proof-of-concept for a new pow-
erful treatment approach for neuropsychiatric disorders. The new 
framework presented in this article could advance biomarker-based 
neural interfaces and enhance the mechanistic understanding and 
treatment of a broad range of neuropsychiatric conditions.
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Methods
Participant. In this n-of-1 study, the patient was a 36-year-old woman with 
childhood onset severe, treatment-resistant MDD (MADRS = 36 out of 54) 
unresponsive to multiple antidepressant combinations and electroconvulsive 
therapy.

Surgical procedure. The patient gave written informed consent for participation 
in a clinical trial of closed-loop neuromodulation for treatment-resistant MDD 
(PReSiDio: NCT04004169), approved by the institutional review board of the 
University of California, San Francisco (UCSF) and by the FDA. (Please see the Life 
Sciences Reporting Summary published along with this case report for additional 
details.) The patient underwent two implant surgeries. In the first, we surgically 
implanted ten SEEG electrodes (PMT Corporation) within the OFC, amygdala, 
hippocampus, VC/VS and SGC as described in Scangos et al.7. Exploratory 
intracranial stimulation and recording took place over a 10-d period (October 
2019). After 10 d, the electrodes were explanted. In the second implant surgery, 
we implanted the NeuroPace RNS System with 2 four-contact-depth leads (30-cm 
lead length, 3.5-mm electrode spacing) in the right VC/VS and amygdala, guided 
by our findings in the 10-d recording and monitoring (mapping) period. Surgical 
targeting was planned using the Brainlab iPlan Cranial Software (v3.0) using 
diffusion tensor imaging (DTI)18 or coordinate-based targeting3 in accordance with 
published work. Computerized tomography was used intraoperatively to confirm 
electrode placement. No complications of surgery occurred.

Clinical measures. To assess moment-to-moment changes in MDD symptom 
severity, we used VAS-D19 and VAS-A and the HAMD-6 of the HAMD-17, which 
is thought to capture the core symptoms of the full scale and has been used to 
assess the rapid effects of antidepressants20–22. Our symptom assessment strategy 
included an a priori plan to consider the dimensions of depression that can change 
in the course of a day as represented in the HAMD-6 subscale of the HAMD-
17, which includes: (Q1) sadness; (Q2) guilt; (Q3) apathy; (Q4) fatigue; (Q5) 
anxiety; and (Q6) energy but focusing only on the dimensions that were possible 
to meaningfully operationalize in the setting of repeated testing with a VAS 
(depression, anxiety) and were the smallest number needed to reflect the symptom 
profile of the patient. Study data were collected and managed using the Research 
Electronic Data Capture (REDCap, v10.6.19) electronic data capture tools hosted at 
UCSF23,24. REDCap is a secure, Web-based software platform designed to support 
data capture for research studies, providing (1) an intuitive interface for validated 
data capture, (2) audit trails for tracking data manipulation and export procedures, 
(3) automated export procedures for seamless data downloads to common 
statistical packages and (4) procedures for data integration and interoperability 
with external sources. The patient performed her in-lab and at-home surveys using 
this tool on a study iPad. In the clinical mapping stage, she performed 335 VAS-D, 
VAS-A and HAMD-6 scales over the 10 d. Scores were distributed across the full 
range of the patient’s natural emotions (VAS-A, mean = 17.5, s.d. = 21.7; VAS-D, 
mean = 26.3, s.d. = 12.9). These measures were used to define two symptom states 
(high and low symptom severity). Once the NeuroPace RNS System device was in 
place, the patient was asked to perform at-home surveys 2–3 times per day.

Signal processing. Intracranial electroencephalogram (iEEG) recordings derived 
from SEEG electrodes were used to derive measures of activity and connectivity. 
This is a high-resolution intracranial recording technique25 and is commonly 
used in the presurgical evaluation of drug-resistant epilepsy. Stimulation through 
these electrodes (single pulses26 or continuous stimulation27) was used to 
perform stimulus-response mapping, assess connectivity and assess the effects of 
perturbation to MDD networks. Data acquisition of iEEG recordings and evoked 
potential mapping were performed with a 256-channel Nihon Kohden clinical 
system and secondary data stream at a sampling rate of 10 kHz. Standard SEEG 
preprocessing techniques were conducted in Python and involved application of 
a 2–250 Hz bandpass filter, notch filters at line noise frequency and harmonics, 
downsampling to 512 Hz and common average referencing across all channels. 
Signal processing was performed using the continuous wavelet transformation 
(Morlet, 6-cycles)28 at 30-s intervals to obtain power in 6 spectral frequency 
bands (delta = 1–4 Hz, theta = 5–8 Hz, alpha = 9–12 Hz, beta = 13–30 Hz, low 
gamma = 31–70 Hz, high gamma = 71–150 Hz). Artifacts in evoked potential 
analysis were removed with an eighth-order Butterworth filter.

Electrode stimulation. Our approach to clinical mapping is discussed elsewhere7. 
Briefly, we tested the clinical effect of a set of stimulation parameters used in 
the evaluation of patients with epilepsy (1 or 100 Hz, 100 µs, 1–6 mA) through 
a systematic bipolar stimulation survey and then blinded sham-controlled 
stimulation studies across 10 d. Where indicated, the brain stimulation 
configuration is represented by contact number and polarity (for example, 2+/3− 
reflects that contact 2 is anode and contact 3 is cathode). Once the NeuroPace 
RNS System device was in place, we repeated the bipolar stimulation survey 
and sham-controlled stimulation using the same clinical scales as outcome 
measures. The study was single-blinded such that the patient was blinded to 
stimulation location and parameters. Closed-loop neuromodulation introduces 
a new stimulation parameter—the burst duration delivered once a depressed 

state is detected. We tested the effect of burst duration in a systematic manner 
by delivering increasing durations of stimulation (6, 12, 18, 36 s bursts,100 Hz, 
120 µs, 1 mA) while keeping total stimulation time constant over 15- and 30-min 
time intervals. Our strategy was to identify a set of parameters where intermittent 
stimulation was clinically effective over a time interval but each burst onset was 
not detected by the patient to prevent interfering with normal activities and select 
shorter more frequent bursts over less frequent but longer stimulation periods to 
increase specificity.

Biomarker discovery. The development of symptom-specific biomarkers 
in depression have been challenged by the lack of objectively observable 
clinical symptoms, such as those that exist in movement disorders, and the 
multidimensional nature of MDD. We addressed this challenge during the 
mapping trial in several ways. We included a high trial count to address inherent 
noise in the self-assessment of internal state. We also ensured there was variability 
across time in the measures by including the presence of mood variability as 
one of the inclusion criteria of the clinical trial and having the patient perform 
naturalistic activities in the laboratory setting that induced symptom state variation 
(for example, recalling life events, watching movies, using social media) during the 
10-d period. Then, based on the anxiety and depression dimensions of the VAS 
scale, we sought to identify states of high and low symptom severity objectively 
using semisupervised k-means clustering. Specifically, to discriminate noisy ratings 
from clinically relevant ratings, we used cluster tuning and cluster aggregation 
to discriminate two symptom severity states based on the VAS ratings that best 
corresponded to the clinically established HAMD-6 scores.

To identify spectral biomarkers related to symptom severity state, we 
asked the patient to rest for 15-min and then assessed MDD symptom severity 
(self-reported HAMD-6, VAS scales) about 5 times each day. These 15-min 
intervals were required to be at least 1 h from stimulation to minimize any 
potential influence of stimulation on neural activity. Spectral power was 
calculated in 30-s intervals and averaged across the 15-min recording period 
to obtain power in 6 frequency bands. We then modeled differences in spectral 
power across symptom states to identify the spectral power features that were 
predictive of high symptom severity using cross-validated machine learning 
models. In the first model, the feature set was defined by spectral power averaged 
across all contacts within brain regions (10 regions × 6 bands = 60 features). In a 
second model, the feature set was defined by spectral power for each electrode 
contact (41 anatomically verified contacts × 6 bands = 246 features). The 
modeling pipeline consisted of feature selection based on ANOVA F value and 
classification using penalized logistic regression trained on 80% of the data and 
tested on the remaining 20%. We repeated the training/test schema 1,000 times 
to ensure stability in AUC score and feature importance histograms. Significance 
was assessed by comparing the output of our logistic classifier to a null model 
obtained from randomly permuting class labels 1,000 times.

In closed-loop mode, delivery of therapeutic stimulation is expected to 
normalize the biomarker that triggers the stimulation. To test the effect of VC/
VS stimulation on biomarker activity, we examined the change in gamma power 
in two 30-s intervals before and after a period of continuous stimulation. We 
included all types of stimulation trials where we had sufficient iEEG activity and 
VAS scales. All stimulation was at 100 Hz, 100 µs and 1–3 mA, bipolar contacts 
2+3−. Stimulation was delivered continuously on 4 out of 5 trials. The change was 
examined in relation to the change in symptom severity due to stimulation.

We validated the biomarker once the NeuroPace RNS System was in place. In 
the laboratory setting, we streamed continuous neural data (electrocorticography) 
using the NeuroPace RNS System wand held over the cranially implanted 
neurostimulator with a flexible metal arm. Once the final RNS detection 
parameters were identified, we collected 18 trials with 10 min of resting-state 
neural activity followed by depression measures over the course of 7 d. As in the 
10-d mapping period, the patient engaged in a range of naturalistic activities 
during the recordings. Logistic and linear regression models were then constructed 
to assess the relationship of amygdala gamma power and symptom severity state or 
VAS-D and HAMD-6 scores, respectively.

Effective connectivity. Effective connectivity is a functional connectivity 
measure that describes the directional influence of one brain region on another29. 
Intracranial EEG and intracortical stimulation offer the rare and unique capability 
to directly probe effective network connectivity through the delivery of brief 
stimulation pulses across adjacent contacts in one brain region and examination 
of the electrical effect of perturbation—the evoked potentials—in distant contacts. 
Evoked potential mapping was performed on day 1. We delivered bipolar single 
pulse stimulation (1, 3, 6 mA) at 0.5 Hz for 40 s to adjacent contact pairs across a 
central contact pair in each brain region. Standard methods were used26 to measure 
and quantify evoked potentials including calculating the mean across 20 trials, 
z-scoring voltage against 50 ms of prestimulus baseline, identifying N1 and N2 by 
their peak deflection magnitude within the 10–50 and 50–500 ms time windows, 
respectively, constructing connectivity matrices from N1 response amplitude for 
the full set of evoked potentials and filtering on statistically significant evoked 
potentials to generate a directed network graph. We determined which electrodes 
exhibited statistically significant evoked potentials by comparing the distribution 
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of N1 responses due to 20 single pulses to the distribution of prestimulation 
baseline fluctuations. The baseline score quantified the amount of spontaneous 
voltage fluctuation in the absence of stimulation and was calculated by finding 
the peak deflection magnitude during the 50 ms before stimulation, z-scored 
against the mean voltage in the 50–100 ms window before stimulation. We used a 
one-sided Wilcoxon signed-rank test with Benjamini–Hochberg false discovery 
rate correction to determine if the N1 response was statistically larger than the 
baseline spontaneous fluctuation. Compared to a uniform z-score threshold, this 
approach allowed us to account for variable noise between electrodes and identify 
true evoked potentials with greater sensitivity.

In graph theory, a graph represents the electrophysiology network where nodes 
are considered to be individual electrodes and the directed link or edge between 
nodes represents the effect of stimulation of the source node on the amplitude of 
the neural signal at a distal node30. We computed two graph theoretical metrics 
from the evoked potential connectivity map—indegree and outdegree—to 
determine the direction and strength of functional connections between nodes 
and inform the relationship of stimulation and sensing target candidates. A 
node with high outdegree is a hub of high network influence in that stimulation 
there highly affects other nodes in the network and could be indicative of a good 
treatment target31. A node with high indegree suggests a region that is influenced 
by stimulation in other regions and may play a role in sensing modifiable neural 
signatures of MDD that normalize with stimulation elsewhere in the network. 
We calculated indegree by taking the weighted sum of significant connections 
(N1 amplitudes) pointed toward each node and outdegree by the weighted sum 
of significant connections projecting away from each node for right and left 
hemispheres and the total brain network. We identified those hubs that had the 
highest values and were directionally connected.

DTI. DTI can be used to map structural connectivity by identifying putative 
axonal fiber tracts that might mediate effective connectivity, thereby constraining 
our model of functional integration across distant brain regions29. Engagement of 
specific white matter tracts or the intersection of several tracts has been shown 
to improve outcomes in DBS for depression32,33. While the exact relationship 
between structural and functional connectivity is unknown, it has been suggested 
that structural connectivity properties can be implemented as an informative 
prior in a Bayesian model of effective connectivity34. Diffusion data were acquired 
using axial DTI high angular resolution diffusion imaging at 3 Tesla with a 
32-channel head coil (B value = 2,000 s mm−2, 55 directions). Tractography 
was performed using deterministic fiber assignment by continuous tracking35, 
implemented within the Brainlab Fibertracking (v3.0) software. Tractography 
was based on 3-mm diameter spherical regions of interest centered on each 
contact of a candidate stimulation and sensing pair; DTI parameters were the 
same for all pairs with minimum fractional anisotropy = 0.1, minimum fiber 
length = 80 mm and maximum angulation = 20 degrees. The resulting fiber tracts 
are color-coded by orientation (red, left to right; green, anterior-posterior and blue, 
superior-inferior). Using these parameters, the number of streamlines was used to 
compare the strength of connectivity for each candidate stimulation-sensing pair 
(VC/VS stimulation-amygdala sensing, VC/VS stimulation-OFC sensing, SGC 
stimulation-amygdala sensing and OFC stimulation-amygdala sensing).

Closed-loop control. The NeuroPace RNS System was first placed in a 
sensing-only configuration where neural biomarkers could be detected but no 
stimulation was delivered (0 mA). For the first 2.5 months, we found a detection 
algorithm that could identify the amygdala gamma biomarker, modifying 
several parameters including detector number, bandpass threshold, window 
size and count criterion. Our final detector included the following parameters: 
pattern A1 (amygdala 3/4): minimum-maximum frequency = 28.8–125 Hz, 
minimum amplitude = 0.8%, window size = 160 ms, count criterion = 10, bandpass 
threshold = 3, detection analysis window size = 2,048; pattern A2 (amygdala 1/2): 
minimum-maximum frequency = 28.8–125 Hz, minimum amplitude = 0.8%, 
window size = 160 ms, count criterion = 10, bandpass threshold = 10, detection 
analysis window size = 2,048. This means a ‘detection’ was triggered when gamma 
power crossed a threshold of 0.8% of full amplitude scale assessed within a 2-s 
sliding window for amygdala contacts 3/4 or 1/2. While the NeuroPace RNS 
System does not implement standard frequency decomposition algorithms, the 
half-wave detector approximates frequency content. In combination with the 
minimal amplitude settings, the detector tracked gamma activity.

With this detector ON, we examined the number of detections in the 10-min 
resting-state intervals for the 18 trials utilized for biomarker validation. Logistic 
and linear regression models were constructed using the number of stimulations 
as the dependent variable and the symptom state or HAMD-6/VAS-D score as the 
independent variable. On day 74, the NeuroPace RNS System was turned on in 
closed-loop mode with stimulation ON (1 mA, 120 µs, 100 Hz). We capped therapy 
number at 300 per day (30-min total stimulation per day), which was reached at 
81.1% of days. On days when the limit was reached, this occurred on average at 
19:40 (s.d. = 3.3 h). This limit was selected because stimulation delivered into the 
evening hours interfered with the patient’s sleep. Therapy limit reset time was at 7:00.

To investigate the relationship between daily symptom severity scores (VAS-D) 
and the time series of the daily number of biomarker detection counts, we used 

DTW, a method demonstrated to be effective at relating time series exhibiting 
naturalistic noise36. After normalizing symptom severity (VAS-D) and biomarker 
detection count time traces by their means, we computed the DTW warping 
function and distance10. To prevent the warping function from skipping important 
symptom severity or biomarker features and cohere with standard practice, 
we incorporated a Sakoe–Chiba warping window of size three37. We tested the 
significance of the symptom severity and biomarker relationship by comparing our 
DTW distance to DTW distances computed between symptom severity time series 
and scrambled biomarker detection time series, where the biomarker time series 
was obtained by randomly shuffling the observed values 10,000 times.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings in this article are available within the article 
itself, the source data and within our publicly available GitHub repository. Raw 
neural signals are freely available from the corresponding author upon request. 
The data used to produce the results and figures in this paper are available at 
https://github.com/ScangosLab/closed_loop_mdd. Source data are provided with 
this paper.

Code availability
The code used to produce the results and figures in this paper is available at  
https://github.com/ScangosLab/closed_loop_mdd.
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Extended Data Fig. 1 | Network Activity and Connectivity. a. biomarker identification was performed at two levels of spatial resolution (see also Fig. 1c). In 
the brain region level model, spectral power was averaged across all contacts within brain regions (60 features). Top neural features (defined by F-score, 
ANOVA) that discriminated high vs. low symptom severity states are shown. Gamma power in the bilateral AMY, right OFC, left SGC, and right HPC had 
high state discriminative potential (Accuracy: mean 0.73, std 0.08; AUC: mean 0.76, std 0.10). ROC curves reflect mean ± SEM over n=1000 randomly 
sampled features for the true model (blue) and the shuffled model (gray). b. Evoked potentials (z-scored relative to baseline) across the corticolimbic 
network due to single pulse stimulation in the right VC/VS, OFC and SGC is shown overlayed on brain as heatmap. Warmer colors indicate a larger 
N1 amplitude. c. Location of right sided sEEG leads targeting AMY (pink), VC/VS (orange), SGC (green), and OFC (blue). Fiber tracts (color coded by 
orientation) show putative structural connections between candidate pairs of stimulation and sensing contacts (VC/VS-AMY, VC/VS-OFC, SGC-AMY, 
OFC-AMY) from deterministic tractography using 3 mm ROIs centered on each contact. Tractography parameters were the same for all pairs: minimum FA 
= 0.1; minimum fiber length = 80 mm; maximum angulation = 20 degrees.
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Extended Data Fig. 2 | Overall Approach to Stimulation and Sensing Target Selection. Multimodal method for personalized responsive stimulation 
multi-lead targeting began with clinical mapping to identify candidate sites where stimulation reliably led to symptom improvement across a range of 
doses and symptom severity states. Candidate sensing locations were identified by pairing resting state neural activity with symptom severity ratings to 
identify spectral power biomarkers that correlated with depression. The relationship between candidate stimulation and sensing targets were then tested 
using three approaches. First, effective network connectivity was assessed by examining the evoked response at nodes across the network due to single 
pulse stimulation at candidate targets. Second, structural connectivity between candidate contact pairs was assessed using tractography. Influential 
tracts were identified to help with retargeting during implantation of chronic stimulation device. Finally, the feasibility of closed-loop control was assessed 
by examining the effect of stimulation in candidate stimulation sites on putative biomarkers identified in candidate sensing locations. This personalized 
approach enabled us to identify one best stimulation and sensing target pair which were then utilized for the implantation of the RNS System and delivery 
of closed-loop neurostimulation therapy.
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